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Abstract—On typical multi-robot teams, there is an implicit
assumption that robots can be trusted to effectively perform
assigned tasks. However, reliable performance of team members
may not always be a valid assumption. For instance, a robot’s
performance may deteriorate over time or a robot may not
estimate tasks correctly. Traditional health monitoring techniques
call attention to an operator or assume a binary classification
of either success or failure. Robots that can identify poorly
performing team members, as performance deteriorates, can
adjust the task assignment process dynamically. This paper
investigates the use of statistical process control charts from
operations research as a tool for monitoring team member
performance as part of a multi-robot task assignment framework.

I. INTRODUCTION

The area of multi-agent systems has been an active area of
research for many years, due in no small part to the ability
for a team of robots to operate more efficiently and be more
robust to failure than a single robot. However, there are still
many challenges related to the interaction between the robots
themselves. Robotic teams may have different quality and
performance capabilities, costs, and owners. As such, robots
may need to learn which team members reliably estimate
and perform tasks as part of a team. This work describes
approaches for using statistical control charts applied to the
task performance of team members in a multi-robot task
assignment domain.

There are two central issues1 related to robot performance
on multi-robot teams [1]: 1) Can a robot detect when other
team members are not performing tasks as expected, and 2)
what actions should a robot take when poor performance is
detected?

In the first case, it is important to consider performance
monitoring techniques from the viewpoint of the robot, rather
than from that of the human operators. Future robot teams
may be formed dynamically, and robots may choose team
members based on observed performance. In the second case,
the robot could choose to notify the operator or complete
the task themselves [1], adjust the cost function based on
performance characteristics [2], [3], attempt to provide aid
[4], or perhaps choose to remove the poorly performing robot

1Parker also describes a third issue related to performance, that being how
or whether to diagnose the problem.

from the team [5]. This paper will consider the first issue and
present a model for monitoring performance of bid estimates
vs. actual task completion times in an auction based multi-
robot task allocation problem.

A. Performance in Multi-Robot Auctions

While there are many mechanisms for performing multi-
robot task assignment, here we will focus on a decentralized,
market based task assignment approach. Market-based auction
methods solve the multi-robot task allocation problem by
splitting computation across multiple nodes and iteratively per-
forming task assignments [6]. These algorithms generally do
not explicitly consider individual team member performance
when allocating tasks. However, there are situations in which
the individual robots on the team may have varying levels of
performance and task estimation accuracy. In order for tasks
to be allocated efficiently, it is important to be able to reliably
trust that robots will perform their assigned tasks with costs
that closely approximate their estimated costs and abilities. If
a robot regularly exceeds its estimated cost for performing a
task, the assignment algorithm should be able to detect this
condition, and adjust the approach to task assignment.

B. Control Charts

Control charts are a statistical process control tool from the
field of operations research [7]. Control charts are a widely
used tool to monitor process quality and to detect when a
measured process deviates beyond an acceptable level of per-
formance. In this paper, we apply control charts to the problem
of detecting when a robot’s performance exceeds an acceptable
threshold. Control charts can be used to distinguish between
acceptable noise in the process and abnormal operation. We
believe that this approach could be used to allow robots to
detect when team members begin to perform poorly. If poor
performance can be detected early, a robot team could take
steps to address the issue and improve the team score.

The rest of this paper is organized as follows. In Section
II, we present the background and related work. In Section
III, we discuss the use of control charts for monitoring task
performance within an auction framework. In Section IV, we
present results of simulated experiments using this approach.
Finally, in Section V, we conclude and present future work.



II. RELATED WORK

Control charts are commonly used to monitor industrial pro-
cess performance but can be applied in many domains. Some
examples include animal production systems [8], machine fault
detection [9], and public health surveillance [10].

The ability to determine when a robot is not performing
or functioning as expected can be used to re-assign tasks or
call attention to an operator. Parker’s L-Alliance framework
addressed the problem of improving efficiency and fault tol-
erance in a multi-robot team [11]. The goal in that work was
for robots to minimize the time to complete a task. Therefore,
time was treated as a quality measure, wherein each robot on
the team kept track of the average time, plus one standard
deviation for that robot to perform a task. That approach is
very similar to the use of control charts described herein;
however, the robots relied on a behavioral framework as a
mechanism for assigning tasks. This paper will also treat time
as a quality measure, as compared to the initial task estimate.
In addition, this paper further validates the running average
approach by incorporating the control chart methods which
have been heavily researched in other domains.

Additional approaches to robot performance based metrics
are also presented by Parker in [1]. This included a discussion
of qualitative and quantitative metrics, such as mean time
between failure or repair. The work also included the notion
of effectiveness metrics, which seek to evaluate the success or
failure of a task in retrospect. Additionally, the work related
the use of statistical models to detect faults when a robot is
in an inconsistent state as part of a sensing task. An open
challenge mentioned in the work was the need for techniques
that can infer the impact of robots that have partially failed,
as well as approaches for handling the partial failures.

In [12], several different approaches to a trust model rep-
resentation are discussed, including the use of continuous and
discrete numerical models, binary models and probabilistic
models. In that work, trust is applied to the information fusion
problem, by incorporating it into a Kalman filter process. Trust
is describe as being multi-dimensional, based on the domain.
For instance, in computer networks, trust can refer to the
trustworthiness of a sensor (whether it has been compromised),
the quality of data from the sensor, or the security of the link
between sensors. This paper defines trust as a robot perfor-
mance metric, however, the use of multiple trust dimensions
is instructive.

Jones, Dias and Stentz investigated techniques for learning
proper task cost estimates in oversubscribed domains, using
auction algorithms [13]. In that work, each robot attempted
to learn their own bid estimates, and had full knowledge of
their own state vectors, including their own schedule. In this
paper, we are interested in determining whether bids accurately
match their estimated values, but from the viewpoint of the
robot auctioneer.

III. APPROACH

In the basic multi-agent auction algorithm, the problem is
to assign tasks to agents. In this case, the task is to visit

a target location and perform an observation. In the auction
framework for task exchange, each robot is a bidder and the
items to be auctioned are the tasks. Each of the agents in
the system also participates as an auctioneer and periodically
auctions new task requests (it is assumed that the task requests
are periodically provided to the agent by an external process,
such as a human operator or other event). This approach can
easily be used on teams with different robot characteristics:
each robot knows their own location and cost function and
submits cost based bids to the auctioneer. While costs and
rewards use the same basis for calculation, no revenue is
actually exchanged. Rather, an agent awards itself a utility
value when one of its own tasks is completed.

In this work, the agents each maintain a current task list
and locally compute their bid to complete the proposed task.
The bid consists of the time-based cost to perform the task.
A potential source of error in task estimation is in the use
of an insertion heuristic for calculating the marginal cost to
perform a task, in addition to those tasks already assigned. In
this paper, each robot plans to visit the targets in the order in
which they were assigned (using the O1 assignment rule from
[14]). For each auction announcement received, each robot
calculates its bid as the amount of time required to complete
the task in addition to those on the current task list. When the
winning bidder is assigned a new task, the task is appended
to the robot’s assigned task list.

A. Cost Factor Metric

At this point, we can define a performer as the robot that
completes a task on behalf of another robot, the originator,
who requested assistance. As described above, the robots
can expect better performance if they are able to exchange
tasks with other team members that can complete them more
efficiently. Upon task completion, the task performer notifies
the originator that the task was completed.2 When the task
is completed, the originator calculates the actual time to
complete the task, tactual, and receives a reward according
to the decreasing reward function from [14]: f(tactual) =
(a−tactualb), where a is the task reward and b is the decrease
factor. In the linearly decreasing reward problem setup, it
becomes even more important for tasks to be completed on
time.

At this point, the originator can calculate the cost factor,
CostFactorBa from the ratio of the actual task completion
time, tactual, to the estimated task completion time, test, for
the bid, B, by the performer, p.

CostFactorBp
=
tactual
test

(1)

It is worth noting that a robot could miss the original cost
estimate for a number of reasons: the cost function could
be using an inaccurate insertion heuristic, the robot could be
low on power and moving more slowly during actual task
execution, or it could have unknown knowledge of its own

2The task completion notification could also come from an external monitor
process.



internal state, for instance. Therefore, it would be useful to be
able to allow for occasional variation in the process, but to
recognize when a robot is performing beyond an acceptable
degree of variation in relation to the team. To address this
issue, we employ control charts as a threshold mechanism to
the process of robot task estimation.

B. Control Charts

Statistical process control (SPC) is used in the operations
research field to improve processes through monitoring and
statistical analysis. A commonly used tool in SPC is the
control chart [7]. The control chart can be applied to situations
when a process needs to be monitored over time against
quality thresholds. Often, they are used as a graphical tool by
managers of the process to detect and communicate instability.
However, the time series data can be computed and used
to monitor performance online. Control charts can monitor
multiple process quality characteristics in the multivariate case,
or a single feature in the univariate case. Here we are interested
in monitoring a single feature value. An example graphical
control chart is shown in Fig. 1. In general, to use the tool,
samples are taken from a process over time and plotted, along
with the known mean value for the process [7]. The known
mean value is referred to as the center line (CL). Two other
known limits are plotted, the upper control limit (UCL) and
lower control limit (LCL).

The underlying concept of the control chart is that a
process can have variation from two causes, common causes
or assignable causes. Common causes are those that are due to
small, unavoidable causes or noise in the production process.
Assignable causes are those that are due to an unplanned,
irregular behavior of the system. Assignable causes may be
due to changes in the environment, a malfunction, or other
unplanned change. When an assignable cause occurs, the
system is said to be out of control [8] . The challenge, then is
to separate the assignable causes from the common causes and
seek to address the assignable causes before they significantly
cause damage, increase cost or slow the production process.

The purpose of the control limits is to allow for the process
to experience some natural variation before costly intervention
occurs. Therefore, the selection of values for the control limits
can be arbitrary and is dependent on the risk tolerance for the
designers of the system and the tradeoff between the cost of
false alarms and missed detections. Often, these limits are set
to three times the standard error of the process [7]. When
the measured process statistic exceeds the control limit, the
process is determined to be out of control.

C. Trust Model

This work relies on the use of a a probability based trust
model, using the beta distribution [15], [16] We rely especially
on the trust mechanism from [15] for incorporating direct
trust and reputation into a probabilistic formulation. This
mechanism provides not only a trust belief about an agent,
but also a confidence value. The approach can incorporate

positive, α, and negative, β, histories to calculate the belief
and confidence values.

Each agent maintains a set of α and β vectors that represent
the histories of interactions with each team member. For a
given team member, if the calculated trust value is less than the
trust threshold, τ , and with confidence greater than γ, it is not
trusted. However, a succession of positive observations (direct
or indirect) can move an untrusted agent back to being trusted
again. Furthermore, this approach is tolerant of noise as it can
take multiple observations to move the value above or below
the trust threshold. To better explain this model, the equations
from [15] for calculating the trust value τ and confidence, γ,
are included below.

When an agent receives new α and β updates for a dimen-
sion of trust, it can calculate the Expected Value for trust using
the trust model as follows.

Etrusti,j =
α

α+ β
(2)

The value, Etrusti,j , is the expected trust that roboti has
toward robotj , given a set of observations, O, from the start
through time t. Therefore, the trust value, τ , is

τ = [Etrusti,j |O1:t] (3)

The confidence factor, γ, is calculated as the proportion of
the beta distribution that is within ε of τ .

γ =

∫ τ+ε
τ−ε X

α−1(1−X)β−1 dX∫ 1

0
Uα−1(1− U)β−1 dU

(4)

D. Shared Reputation

In addition to the observations from direct interactions with
other agents, this approach allows for the agents to incorporate
indirect observations from other trusted team members, known
as shared reputation information. The intent for sharing repu-
tation information among team members is to quickly spread
information about trusted or untrusted agents to the rest of the
team. If an agent can rely on reputation information from other
agents, it might be spared from negative direct interactions
with uncooperative agents. However, the shared reputation
information must be combined with the locally observed trust
vectors. In this framework, each agent can regularly post their
trust model’s α and β vectors to all other team members that
are within range.

In addition, agents only incorporate those updates from
other currently trusted team members. These shared, indirect,
observation vectors are easily integrated into the local vectors
and the scalar trust and confidence values are recalculated. An
example of multiple trust observations from different robots
being combined into a single model is reproduced from [15]
and illustrated in Fig. 2.

Finally, the use of a trust model allows for the robot
to include different dimensions into the trust calculation.
Although in this paper, we only consider the cost factor
for performance, other factors such as participation and task
completion percentage could easily be incorporated into the
model and weighted appropriately.



E. Monitoring Task Performance

At this point, we can relate how the control charts are used
to inform the trust model to monitor performance in multi-
robot auctions. To use a control chart, it is necessary to first
define the value for the CL, which is the mean performance.
On a multi-robot auction, this value could be interpreted as
the average cost factor for performing a task. In the ideal case,
the average is 1: each robot perfectly estimates the amount of
time that it will take to complete a task. However, in practice,
this value could change dynamically, based on environmental
factors, the number of tasks being assigned, the path cost
heuristic being used, and other factors. We will define the
value for CL to be the equal to the mean cost factor for the
good performing type robots to complete tasks under normal
conditions. Initially, we define the set of good performing type
robots to be the entire team. We will define trust in this case
to be directly related to performance: a trusted robot is one
that estimates and performs tasks efficiently. However, using
the trust model described in section III-C, the set of trusted
robots could change if the performance is shown to be out of
control.

The pseudocode for this algorithm is shown in Fig. 3.
Each robot on the team maintains a separate trust model and
control chart for each team mate. At each time step, the robot
samples the cost factor values for tasks that have completed,
and maintains a running average over a time window, R. We
incorporate a running average to allow for minor changes in
the environment that would affect all robots equally (such as
an increased number of tasks.) The running average is used as
the value for CL on the control chart.

To calculate the running average, we include only those
averages from other trusted robots, see Fig. 4. In line 2,
we check whether an agent is trusted, see Fig. 5, before
including that agent in the running average. We also calculate
the standard deviation of the running average for all trusted
robots, and add that to the CL line to get the value for the
UCL line, as shown in Fig. 4, line 8. The LCL does not apply
in this case as we are only concerned with robots that exceed
their time estimates. To smooth variations in the performance
values, we also calculate a running average for the cost factor.
When the cost factor exceeds the UCL value, an out of control
condition is detected.

At this point, the trust model is updated with a β signal
to reflect that the robot did not perform well. If the robot
performed close to their original estimate, the trust model is
updated with the α signal to reflect that the robot is a good
performer. The trust model provides an additional level of
smoothing in the data and can prevent a single bad reading
from causing a robot to be untrusted. The parameters of the
model can be adjusted to adjust the rate at which changes
affect the outcome. Additionally, the trust model allows for
the incorporation of observations from other trusted robots, as
described in Section III-D.

Once a robot becomes untrusted, their performance char-
acteristics are no longer included in the running average
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Fig. 1. An example control chart. The control chart includes a mean for
the process, the center line (CL); an upper control limit (UCL); and a lower
control limit (LCL). When a statistical process exceeds one of the control
limits, the process is considered to be out of control.
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Fig. 2. The Beta Trust Model. Multiple trust models from different robots
are combined into a single beta distribution (plotted with the dashed line).
The model provides for a trust value, τ , and confidence factor, γ.

calculations for the process mean. Additionally, the robot
can use this information as part of the decision process for
handling a poor performing team member (such as notify an
operator, provide assistance, to adjust the task allocation, etc.).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

A set of experiments were performed in simulation to test
the cost factor learning approach in a multi-agent auction
environment. In these experiments, each robot has 50 tasks
that arrive at regular intervals and are sequentially auctioned
by that robot’s auctioneer. As part of the auction process, they
also bid on their own tasks. No currency is actually exchanged
as part of the auction framework.

Rewards are given for task completion to the robot that
originated the task. Each robot submits bids that represent the
time-based cost for completing a task. Specifically, the bid
represents the number of time steps until the task could be
completed. Once a robot finishes all tasks in its list, they no
longer accumulate costs in the simulation. The initial locations
of the robots and the tasks are randomly chosen for each
iteration.



1: tactual ← (CompleteT imeBp − StartT imeBp)
2: RewardBp ← f(tactual)
3: ActualCostBp

← (tactual)
4: CostFactorBp

← ActualCostBp
/EstCostBp

5: runningAvgp ← CalculateRunningAvg(CostFactorBp
)

6: UCL← CalculateUCL()
7: if runningAvgp ≥ UCL then
8: UpdateTrustModel(CostFactorBp

, β)
9: else

10: if runningAvgp ≈ CL then
11: UpdateTrustModel(CostFactorBp

, α)
12: end if
13: end if

Fig. 3. OnTaskComplete() pseudocode. The cost factor, CostFactorBp ,
is the ratio of the estimated vs. actual task completion time. The running
average of the CostFactorBp is monitored using a control chart and when
the process is out of control the trust model is updated.

1: for all r in RobotTeam do
2: if CanTrust(r) then
3: runningAvgr ← CalcRunningAvg(CostFactorBr

)
4: end if
5: end for
6: CL← CalcAvg(runningAvgR)
7: stdDev ← CalcStdDev(runningAvgR)
8: UCL← CL+ stdDev
9: return UCL

Fig. 4. CalculateUCL() pseudocode. The UCL value is calculated as the
mean running average value of all trusted agents, plus one standard deviation.

B. Task Estimation

In this paper, the source for estimation error is assumed to be
due to poor performing type robots having an incorrect model
of their own performance capabilities. To simulate robots that
bid and execute poorly, a percentage of robots on the team are
modeled as poor performer types and a cost factor is applied
to their movements to slow their progress. However the robots
themselves have no knowledge of the change to their state.

1) Consistently Poor Performance: In this experiment, 2
out of 6 robots on the team are marked as poor performers.
Their performance is adjusted by randomly assigning a cost
factor at the start of the experiment, using a normal distribution
with µ = 3 and σ = 0.1. When a poor performer bids on a
task, the unknown cost factor is drawn from this distribution

1: if τ ≤MinTrust AND γ ≥MinConf then
2: return FALSE
3: else
4: return TRUE
5: end if

Fig. 5. CanTrust() pseudocode. The beta trust model can be used to determine
if an agent is untrusted, when a robot has a low trust value, τ , with high
confidence, γ.
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and is applied to the robot’s task performance to simulate error
in estimation and execution. As a result, the robot continually
underestimates the costs for performing tasks. Each robot on
the team observes the tasks completion times for tasks that
others have completed on their behalf, as described in Section
III-E. In this case, the cost factor for the poor performers
exceeds the upper control limit after about 10 auctions have
completed. An example of the control chart for one of the
poor performers in the experiment is shown in Fig. 6.

The corresponding trust model values for this experiment
are shown in Fig. 7. The model shows the convergence towards
trusted values (above 0.5) for the good performer type robots
and to untrusted values (below 0.5) for the poor performer
robots, as the beta trust model is updated with feedback from
the process as described in Fig. 3. This result also shows that
by incorporating values from other trusted agents, as described
in Section III-D, the trust values are further increased for the
good performer robots.

2) Performance decreasing over time: In this experiment,
all robots start out as good performers, but in 2 out of 6
robots, the performance deteriorates over time. To simulate
deteriorating performance, the cost factor of the 2 deteriorating
robots is drawn from the same distribution as in the previous
experiment. However, while the initial values are µ = 1
and σ = 0.1, the µ and σ values are increased by small
values at each time step to simulate a gradual deterioration
in performance. The process monitoring algorithm is able to
detect the deterioration after about 25 auctions have passed
when the cost factor reaches the UCL value. An example of the
control chart for one of the poor performers in the experiment
is shown in Fig. 8.

The ability for robots to detect when the performance of
team members begins to deteriorate would allow for a local
approach to addressing the problem. For instance, the robots
themselves could include performance characteristics into their
decision process or choose to only assign the most important
tasks to the better performers on the team.

V. CONCLUSION

This paper presents a method for recognizing which robot
team members are performing tasks as expected through the
use of control charts. The above experiments showed that
a quality control mechanism can be effective for detecting
poorly-performing team members in a distributed task assign-
ment domain. This may prove useful in situations in which
multi-robot teams are dynamically formed and not all team
members are likely to estimate costs correctly or when cost
functions change over time. Although this paper considered
auction based task allocation, this approach for using control
charts to allow for robots to monitor team members could be
applied more generally.

The use of a trust model in combination with control charts
allows for robots to reason over the model and to share it
with team members. The model can also easily be extended
to include multiple dimensions of trust.

Future work will consider additional learning mechanisms
relevant to task performance. This is related to the problem of
determining how to recognize when tasks that were assigned to
another agent were not only completed according to the initial
cost estimate, but completed within stated quality parameters.
In addition, we would like to explore how performance data
can be used to affect either the task assignment function or to
perform robot team member selection.
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